Aufgaben zur Lauflängen-Codierung

1. Aufgabe:

Codiere den "Pfeil" mit dieser Code-Tabelle. Wie viele Bit benötigst Du dafür? Ermittle die Kompessionsrate in Prozent.

2. Aufgabe:

Dekodiere folgende Daten für ein Bild mit 8 Pixel Breite und 11 Pixel Höhe.

0111-0111-0001-1011-0110-1000-0110-1000-0101-1001-0100-1000-0101-1000-0110-1011-0111-0111-0001

Ermittle die Kompressionsrate in Prozent.

3. Aufgabe:

Skizziere ein kleines Bild, bei dem die Lauflängen-Codierung eine besonders wirksame Kompression ermöglicht. Ermittle die Kompressionsrate in Prozent.

4. Aufgabe:

Skizziere ein kleines Bild, bei dem die Lauflängen-Codierung eine besonders schlechte Kompression ermöglicht. Ermittle die Kompressionsrate in Prozent.

5. Aufgabe:

Die bisher verwendete Form der Lauflängencodierung bestand aus Codeblöcken von je vier Bit. Entwickle eine Codetabelle für die Blocklänge von drei Bit.

6. Aufgabe:

Vergleiche den 4-Bit-Code mit dem 3-Bit-Code. Nenne Vorteile und Nachteile.

7. Aufgabe:

Ein anderes System für eine Lauflängencodierung könnte z.B. so vereinbart sein.

- a) Code-Worte bestehen aus 3 Bit
- b) Der erste Code-Block einer Datei bezeichnet stets weiße Zeichen.
- c) Es wird folgende Codetabelle verwendet:

Code	Bedeutung
000	Farbwechsel
001	1 Zeichen der aktuellen Farbe
010	2 Zeichen der aktuellen Farbe
011	3 Zeichen der aktuellen Farbe
100	4 Zeichen der aktuellen Farbe
101	5 Zeichen der aktuellen Farbe
110	6 Zeichen der aktuellen Farbe
111	7 Zeichen der aktuellen Farbe

Kodiere den Pfeil mit diesem Verfahren. Beurteile dieses Verfahren.