Ministerium für Bildung, Jugend und Sport

Vorläufiger Rahmenplan

Bautechnik

Gymnasiale Oberstufe

Berufsorientierter Schwerpunkt Technik

Sekundarstufe II

Vorläufiger Rahmenplan des Landes Brandenburg

Herausgeber: Ministerium für Bildung, Jugend und Sport des Landes Brandenburg Heinrich-Mann-Allee 107, O-1561 Potsdam Juni 1992

Nachdruck mit Genehmigung des Ministeriums für Bildung, Wissenschaft, Jugend und Kultur des Landes Schleswig-Holstein

Aus dem ersten Schulreformgesetz für das Land Brandenburg

§ 1 Recht auf Bildung

- (1) Jeder junge Mensch hat ein Recht auf schulische Bildung. Dieses Recht wird nach Maßgabe dieses Gesetzes durch das öffentliche Schulwesen gewährleistet.
- (2) Die Fähigkeiten und Neigungen des Kindes sowie der Wille der Eltern bestimmen seinen Bildungsgang. Der Zugang zu den schulischen Bildungsgängen steht jeder Schülerin und jedem Schüler nach Leistung und Bildungsbereitschaft unabhängig von Herkunft sowie der wirtschaftlichen und gesellschaftlichen Stellung der Eltern offen.

§ 2 Allgemeine Bildungs- und Erziehungsziele

- (1) Die Schule unterricht und erzieht junge Menschen. Sie verwirklicht die in der Landesverfassung verankerten allgemeinen Bildungs- und Erziehungsziele. Dazu gehört insbesondere die Erziehung zur Bereitschaft zum sozialen Handeln, zur Anerkennung der Grundsätze der Menschlichkeit, der Rechtsstaatlichkeit, der Demokratie und der Freiheit, zum friedlichen Zusammenleben der Völker und zur Verantwortung für die Erhaltung und den Schutz der natürlichen Umwelt sowie zu der Fähigkeit und Bereitschaft, für sich allein und gemeinsam mit anderen Leistung zu erbringen.
- (2) Die Schule achtet das Erziehungsrecht der Eltern. Sie wahrt Offenheit und Toleranz gegenüber den unterschiedlichen religiösen, weltanschaulichen und politischen Überzeugungen und Wertvorstellungen. Sie gewährt die gleichberechtigte Bildung und Erziehung hinsichtlich der Geschlechter und der kulturellen Herkunft. Sie vermeidet, was die Empfindungen Andersdenkender verletzen könnte. Keine Schülerin und kein Schüler darf einseitig beeinflußt werden.

Verwaltungsvorschriften über die Rahmenpläne für schulische Bildung im Land Brandenburg (Rahmenplan VV) vom 24. April 1992

Auf Grund der §§ 22 und 75 Absatz 4, Erstes Schulreformgesetz für das Land Brandenburg (Vorschaltgesetz-1. SRG) vom 28. Mai 1991 (GVBl. S. 116), in der Fassung des Gesetzes vom 20. Dezember 1991 (GVBl. S. 694) bestimmt die Ministerin für Bildung, Jugend und Sport:

1. Rahmenplan

Für den Unterricht in der Grundschule, Sekundarstufe I und Gymnasialen Oberstufe gelten die in der Anlage aufgeführten Rahmenpläne.

Die Veröffentlichung der Rahmenpläne erfolgt in den Schriften "Vorläufiger Rahmenplan" des Ministeriums für Bildung, Jugend und Sport.

Die Rahmenpläne werden in der Brandenburgischen Universitätsdruckerei gedruckt und können dort käuflich erworben werden (Anschrift: Brandenburgische Universitätsdruckerei und Verlagsgesellschaft Potsdam mbH, Karl-Liebknecht-Straße, O-1574 Golm).

2. Aufbewahrung

Die Vorläufigen Rahmenpläne sind in den Bestand der Schulbibliotheken aufzunehmen und dort zur Einsicht bzw. Ausleihe verfügbar zu halten.

3. Überleitungsbestimmung

Mit dem Inkrafttreten dieser Verwaltungsvorschriften treten die entsprechende Lehrpläne, Rahmenrichtlinien, Hinweise und Empfehlungen außer Kraft, die zum Schuljahr 1991/92 durch Verwaltungsvorschrift vom 22.08.1991 in Kraft gesetzt wurden.

4. Inkrafttreten

Diese Verwaltungsvorschriften treten am 10. August 1992 in Kraft.

Potsdam, den 24. April 1992

Die Ministerin für Bildung, Jugend und Sport

Marianne Birthler

Der vorliegende Rahmenplan wurde durch die im Amtsblatt des Ministeriums für Bildung, Jugend und Sport bekanntgemachten und vorstehend abgedruckten Verwaltungsvorschriften in Kraft gesetzt.

Vorwort

Ein Schuljahr auf der Grundlage veränderter rechtlicher Grundlagen, neuer Inhalte und Rahmenbedingungen liegt hinter uns.

Die Arbeit mit neuen Rahmenplänen und Lernmitteln, das Erfassen und Umsetzen einer in den wesentlichen Punkten neuen pädagogischen Konzeption stellte an Lehrende und Lernende große Anforderungen. Dabei wurden beachtliche Erfolge erzielt.

Im oftmals schwierigen Schulalltag kann es allerdings durchaus geschehen, daß wichtige Grundsätze aus dem Blick geraten, daß durch die Fülle der Aufgaben und Anforderungen die Orientierung für das Wesentliche verloren geht. Deshalb ist es auch zu Beginn des Schuljahres 1992/93 sicherlich nicht überflüssig, an das, was sich bewährt hat, zu erinnern:

- Die Achtung der Würde des Kindes gebietet seine ständige Ermunterung und Befähigung zum selbständigen und eigenverantworlichen Handeln. Dies geht nicht, ohne immer wieder erneutes Vertrauen in das Kind zu setzen und demokratische Verhältnisse an der Schule für Lehrende und Lernende zu wahren.
- Schulbildung ist als Teil einer umfassenden Menschenbildung zu verstehen und zu gestalten. In diesem Sinne ist die Schule mitverantwortlich dafür, daß möglichst alle Schülerinnen und Schüler Wesen und Wert der Demokratie begreifen, die Untrennbarkeit von Frieden und Gerechtigkeit sehen, sowie Verantwortung beim Erhalt der Natur zu übernehmen bereit sind.
- Aus diesem übergreifenden Anliegen der Schule ergeben sich Konsequenzen für die Unterrichtsgestaltung im engeren Sinne:
 - *Wenn Frontalunterricht schon nicht völlig vermieden werden kann, so ist er doch durch andere Lernformen zu ergänzen.
 - [°]Beim Lernen müssen Kopf, Herz und Hand der Schülerinnen und Schüler mit einbezogen werden, ansonsten laufen wir Gefahr, in die Nähe kognitiver Kopflastigkeit zu geraten, die vielen Lehrerinnen und Lehrern aus der DDR-Schule noch in unguter Erinnerung ist.
 - Leitprinzip für den Fachunterricht kann nicht das Bemühen um Einhaltung der Wissenschaftssystematik sein, sondern fächerübergreifendes Denken und Handeln sollte so gut und oft wie nur irgend möglich gefördert werden. Gute Bedingungen dafür ergeben sich z.B. bei der Arbeit an schülerorientierten Projekten.
 - Durch das exemplarische Lernen und deutlich geringeren Stoffumfang haben sich Freiräume ergeben, die von allen Lehrerinnen und Lehrern so sinnvoll wie nur irgend möglich auszufüllen sind, z.B. durch die differenzierte Arbeit mit einzelnen Schülerinnen und Schülern oder mit Schülergruppen, durch die Entwicklung von Fertigkeiten und Fähigkeiten und durch die Festigung der Kenntnisse.

Wenn diese Leitlinien das Handeln der Lehrerinnen und Lehrer bestimmen, ist ein großer Schritt dafür getan, daß sich Schulangst und Schulverdrossenheit nicht ausbreiten können.

Für nahezu alle Unterrichtsfächer der Grundschule, Sekundarstufe I und gymnasialen Oberstufe stehen nun mit Beginn des Schuljahres 1992/93 völlig neue Pläne zur Verfügung.

Das neugeschaffene Pädagogische Landesinstitut Brandenburg (PLIB) trug die Verantwortung für die umfangreichen Arbeiten bei der Rahmenplanentwicklung. Einbezogen wurden dabei viele Brandenburger Lehrerinnen und Lehrer, denen in nicht geringem Umfang Hilfe durch Lehrerinnen/Lehrer und Wissenschaftlerinnen/Wissenschaftler aus alten Bundesländern zuteil wurde. Beachtung fanden ebenso Erfahrungen Brandenburger Lehrerinnen und Lehrer, die im zurückliegenden Schuljahr mit Rahmenplänen gesammelt wurden.

Dafür gebührt allen Beteiligten Dank und Anerkennung.

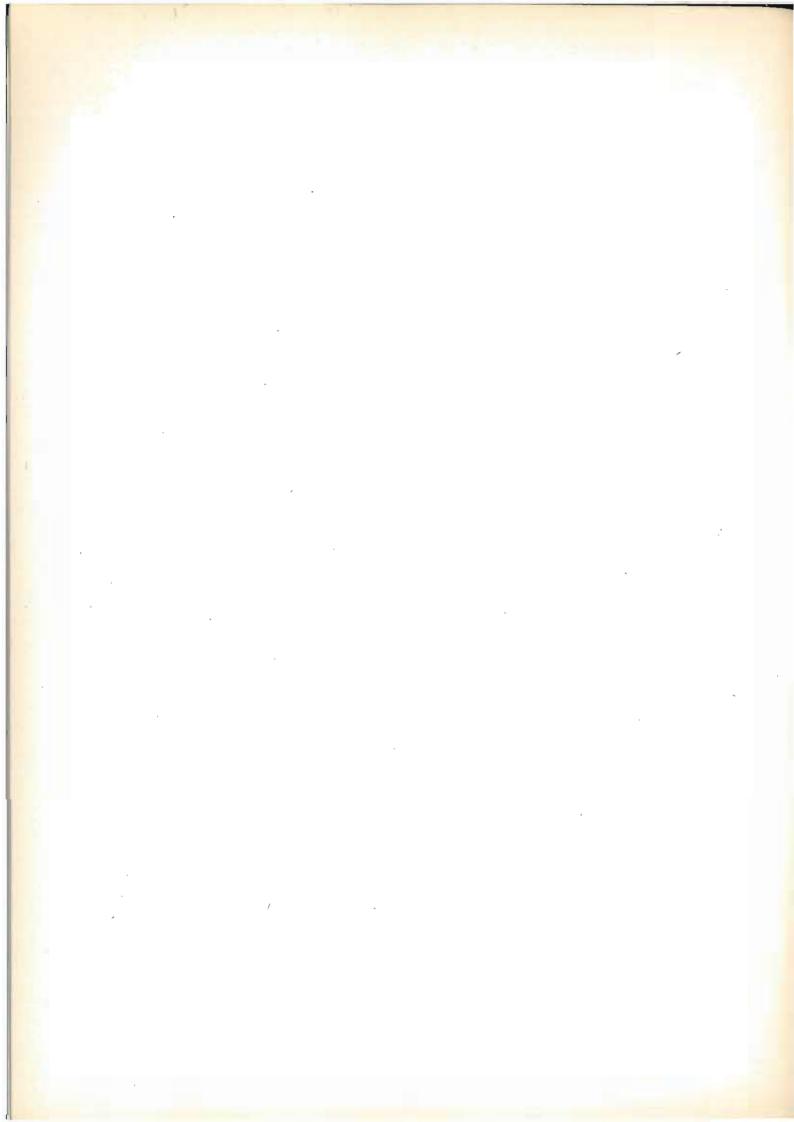
Für das neue Schuljahr wünsche ich Ihnen Kraft und schöpferische Phantasie beim Einsatz Ihrer pädagogischen und fachlichen Kompetenz.

Marianne Birthler

Ministerin für Bildung, Jugend und Sport des Landes Brandenburg

Inhalt

I. Leitlinien


1.	Ansprüche an die Unterrichtsgestaltung	9
2.	Die Aufgaben der gymnasialen Oberstufe	13

II. Vorläufiger Rahmenplan für das Fach Bautechnik

Vorbemerkungen	17
Kursübersicht	17
Jahrgangsstufe 11	18
Jahrgangsstufe 12	24
Jahrgangsstufe 13	30

Anmerkung:

Die in diesem Rahmenplan stehende Formulierung "der Schüler" ist wegen der generellen Übernahme des Rahmenplanes und aus Zeitgründen nicht geändert worden. Die richtige Formulierung müßte heißen "die Schülerin/der Schüler".

I. LEITLINIEN

1. Ansprüche an die Unterrichtsgestaltung

Mit diesem Teil der Leitlinien werden den Lehrerinnen und Lehrern und insgesamt den an Schule Beteiligten Ideen, Vorstellungen und Begründungszusammenhänge vermittelt, die auf einen Unterricht orientieren, in dem die Schülerinnen und Schüler im Mittelpunkt des Geschehens stehen.

Diese Leitideen verstehen sich als fächer- und stufenübergreifende didaktische Überlegungen. Sie dienten den Rahmenplankommissionen als Arbeitsorientierung. Darüber hinaus sollen sie den Lehrerinnen und Lehrern ein Instrumentarium erschließen, das sie in die Lage versetzt, die Rahmenpläne kritisch zu prüfen und in schulinterne Lehrpläne umzusetzen. Im besten Falle finden sich diese Ideen in den unterrichtsbezogenen Texten des Rahmenplans wieder. Es kann aber auch sein, sie stehen in einem produktiven Widerspruch zu einigen Formulierungen.

Im folgenden werden einige didaktische Grundbegriffe für den Unterricht entfaltet:

Schülerorientierung

Die Praxis von Unterricht kann sich in vielfältiger Weise an den Schülerinnen und Schülern orientieren, z. B. durch die Erörterung der vorhandenen Interessen, durch darin begründete Modifikation der Inhalte, bei der Ausarbeitung von mittel- oder längerfristigen Arbeitsplänen, in der gemeinsamen Bewertung von Unterrichtser-gebnissen.

Dabei muß das Mißverständnis zurückgewiesen werden, Schülerorientierung bedeute, den Schülerinnen und Schülern den Unterricht selbst zu überlassen oder allein deren Interessen zu bedienen. Fragen, Probleme, Interessen und Erfahrungen der Lernenden sollten, wo immer möglich, Ausgangspunkt, nicht aber ausschließlicher Inhalt des Unterrichts sein. Auch schülerorientierter Unterricht muß über den Status quo hinausführen, neue Sichtweisen lehren, Verengungen auflockern, erweiterten Informationserwerb unterstützen.

Schülerorientierung heißt auch, den Schülern didaktische Kompetenz zuzutrauen, sie in die Planung und Gestaltung von Unterricht nach Möglichkeit einzubeziehen. Lehrerinnen und Lehrer müssen gegebenenfalls lernen, sich stärker zurückzuhalten und weniger "lenkend" einzugreifen.

Handlungsorientierung

Zahlreiche Lerntheorien stützen die Idee, Unterricht so zu gestalten, daß die Schülerinnen und Schüler vielseitig - geistig, körperlich und psychisch - tätig werden sollen, weil die Entwicklung des Denkens an direkte Erfahrungen gebunden ist. Diese Forderung ist nicht schon erfüllt, wenn man das Handeln an einzelne Fächer oder in Sondersituationen delegiert, z. B. an die Schulgartenarbeit, das Basteln im Sachunterricht, den Arbeitslehreunterricht und das darstellende Spiel.

Die Handlungsforderung bezieht sich im Kern auf das praktische und geistige Tätigwerden der Schülerinnen und Schüler im Unterricht. Das kann die Erkundung im Rahmen eines Ökologieprojekts ebenso sein wie die Befragung älterer Menschen im Zeitgeschichtsunterricht. Handeln bedeutet in diesem Sinne: Beobachten, Vergleichen, Bedenken aber auch Verändern und Herstellen. Das Handlungsgebot macht es deshalb auch erforderlich, daß die Schülerinnen und Schüler den Sitzplatz, die Klasse, die Schule zeitweise verlassen, um Informationen und Erfahrungen zu sammeln, Erkenntnisse zu gewinnen.

Problemorientierung

Problemorientierter Unterricht geht von (meist aktuellen) Problemstellungen in Natur, Kultur und Gesellschaft aus, die Anlaß zu Fragen, zu Unsicherheit und Zweifel, zur Analyse und zur Stellungnahme geben. Das kann z. B. eine Statistik über das Waldsterben ebenso sein wie die Mietpreiserhöhung in der Region, das Schleifen eines Denkmals wie der Bau einer Umgehungsstraße, das Doping-Problem oder die finanziellen Aufwendungen für die Restaurierung und den Erhalt des NS-Konzentrationslagers in Auschwitz. Die Chance des problemorientierten Unterrichts liegt in der - wahrscheinlich kontroversen - Stellungnahme der Schülerinnen und Schüler.

Die Aufgabe der Lehrerinnen und Lehrer besteht im wesentlichen darin, Hilfen beim Formulieren von Fragen und Voten, in der Bereitstellung von Literatur und Material zu geben und fachwissenschaftlich orientierte Problemanalysen und Argumentationsmethoden vorsichtig anzubahnen. Problemorientierung sollte also nicht als Abarbeiten von Problemlösungsschritten verstanden werden, das kreatives Denken eher erschwert. Fachwissenschaftliche Systeme oder gesicherte Ergebnisse der Wissenschaften sind weniger geeignet, problemorientiertes Lernen zu inszenieren.

Ganzheitlichkeit

Auf Ganzheit, auf den ganzen Menschen und auf eine ganzheitliche Sichtweise auf das Anzueignende haben schon viele pädagogische Theorien aufmerksam gemacht. Daß es sich dabei um ein Ideal handelt, das schwer zu realisieren ist, wurde hinreichend klar.

Was kann heute ganzheitlich sein? Das bedeutet zunächst einmal, die Verengung des Bildungsbegriffs auf das Intellektuelle, Rationale zu überwinden. Auch das, was gefühlt wird, was sinnlich oder seelisch wahrgenommen wird, ist für Lernprozesse zunehmend wichtig. Wahrnehmungen und Gefühle sollten für emanzipatorische Prozesse nicht mehr unterschätzt werden.

Ganzheitliches Lernen verträgt sich nicht mit stundenlangem Sitzen, mit dem Aneignen ausschließlich kognitiver Arbeitsschritte wie Durchlesen, Berichten, Argumentieren. Ganzheitlichkeit ist heute vor allem ein Problem der gemeinsamen Arbeit von Lehrerinnen und Lehrern und Schülerinnen und Schülern in einer Weise, in der sich jeder als Mensch "ganz" – nicht nur mit seinen Kenntnissen – zur Geltung bringen kann. Dies ist die Voraussetzung dafür, die Welt aus vielen Perspektiven, mit kontroversen Einschätzungen in Erfahrung zu bringen und sich darüber zu verständigen.

Ganzheitlichkeit meint aber auch Bildungsziele wie die Vermittlung von Verantwortungsbewußtsein, das Erkennen der Vernetzung von Handlung und Wirkung bei Eingriffen in natürliche oder soziale "Ganzheiten" (z.B. bei Verkehrsplanungen, Wechselwirkungen zwischen Ökologie und Ökonomie). Befördert werden diese übergeordneten Bildungsziele

durch eine Planung von Unterricht, in dem die affektiven, kognitiven und instrumentellen Lernziele gleichberechtigt für die Lernschritte geplant und realisiert werden. Zum anderen geschieht das durch fächerübergreifenden Unterricht.

Exemplarität

In jeder Einzelwissenschaft werden mehr Fragen bearbeitet, als in einem Unterrichtsfach untergebracht werden können. Es gibt mehr Bilder, mehr Gedichte, mehr historische Ereignisse, mehr soziale Probleme, als die Schulfächer behandeln können. Wer unterrichtet, wählt daher aus, und zwar nach einem Doppelkriterium:

- Was unterrichtet wird, soll exemplarisch für einen größeren Sachzusammenhang sein. Das ist die Frage: "exemplarisch wofür?"
- Was unterrichtet wird, soll exemplarisch für eine Schülergruppe mit vergleichbaren Vorkenntnissen oder Erfahrungen sein. Das ist die Frage: "exemplarisch für wen?"

Und wo bleibt die Systematik? Zunächst im Kopf des Lehrers. Denn: Schüler nehmen die Welt nicht wissenschaftssystematisch wahr. Eine systematische Ordnung fachlicher Inhalte kann für die Schüler am Ende der Schulzeit entstehen. Sie ist erst sinnvoll, wenn Vertrautheit mit fachlichen Methoden, Strukturen und Fragestellungen entstanden ist.

Exemplarisches Lehren und Lernen sind keine Allheilmittel. Auch Überblicke, Zusammenfassungen, Übungen und Wiederholungen haben ihre Berechtigung. Sie sind oft Voraussetzungen oder Abschluß einer exemplarischen Unterrichtseinheit.

Wissenschaftsbezug

Die pauschale Forderung, Unterricht solle auf Wissenschaft bezogen sein, kann recht Verschiedenes meinen. Zunächst geht die Formel vom Wissenschaftsbezug auf die Kritik der sogenannten "Volkstümlichen Bildung" zurück. Demokratische Gesellschaften dürften nicht nach volkstümlich gebildeten Laien und wissenschaftlich gebildeten Experten auseinander fallen. Wissenschaftsorientierte Bildung für alle ist ein wesentlicher Wert einer demokratischen Schule.

Die spezifische Aufgabe der allgemeinbildenden Schule wird aber verfehlt, wenn unter Wissenschaftsbezug fälschlich verstanden wird, Unterrichtsinhalte seien lediglich aus den Fachwissenschaften zu deduzieren, die den Unterrichtsfächern korrespondieren. Entwicklungsbedingte Weltsicht wird dabei ebenso vernachlässigt, wie Lebensweltbezüge oder geschlechtsspezifische Differenzen. Deswegen spricht mehr dafür, Wissenschaftsbezug an Methoden und Erklärungsmustern der Wissenschaft zu orientieren. Die Schrittfolge des Lehrens und Lernens ist an die Bedürfnis- und Interessenlage der Schülerinnen und Schüler zu binden. Sie wird deswegen von einer innerfachlichen Logik abweichen müssen.

Offenheit

"Offener Unterricht" ist ein Gebot für alle Schularten und -stufen, "Offen" heißt lernen, auf der Grundlage gemeinsam vereinbarter Wochenpläne, der Verbindung vielfältiger Arbeitsformen, des Ineinandergreifens von inhaltlich akzentuierten und sozialen Lernformen, der Berücksichtigung individueller Interessen und Übungsnotwendigkeiten, des Akzeptierens unterschiedlicher Lerntempi, des Wechsels von Einzel-, Partner- und Plenumsarbeit, des Wechsels von diversen Formen der Tätigkeit. Offen bedeutet auch Variabilität im Hinblick auf die Lernorte.

Entdecken kann nur derjenige, der von der Hauptstraße abweicht, der suchen kann, ohne daß einer führt, der über Haupt-, Neben- oder Umwege selbst entscheiden kann. Lernen geschieht nicht auf Einbahnstraßen, mit Zäunen rechts und links, sondern eher in offenen, teilstrukturierten - aber nicht durchstrukturierten - Situationen. Dabei kann man aus der Biologie in die Chemie, aus der Literatur in die Bildende Kunst, aus der Geschichte in die Geographie geraten. Niemand kann auf eigene Faust die Schulfächer abschaffen. Aber niemand muß Zäune errichten.

Differenzierung

Es ist unwahrscheinlich, daß der individuellen Vielfalt des Lernens mit dem Lehren im Gleichschritt für alle gedient ist. Es ist auch unwahrscheinlich, daß die Lernergebnisse aller auf demselben Niveau sind. Wenn das stimmt, dann kann Unterricht nicht allen dadurch gerecht werden, daß stets alle dasselbe tun. Hier entsteht die Forderung nach Differenzierung.

In "arbeitsteiligen" Gruppen können unterschiedliche Schwierigkeitsgrade der Aufgabenformulierung auf die Leistungsfähigkeit einer Gruppe bezogen werden. Bei "arbeitsgleichen" Gruppen können leistungsfähigere Schülerinnen und Schüler schwächere unterstützen. Die "Partnerarbeit" ist ein Modell für gegenseitige Hilfe. Der "Klassenstar" kann durch die Information über einen nicht von allen bearbeiteten Aspekt des Sachzusammenhangs zusätzlich gefordert werden. Und in einem Plenum, bei einem "Berichtstag", wenn alle einzeln oder in Gruppen ihren Beitrag geleistet haben, wird gemeinsam Bilanz gezogen.

Unterricht, der sich an solchen Prinzipien orientiert, wird dadurch nicht einfacher. Er aktiviert die Schülerinnen und Schüler und macht den Lehrerinnen und Lehrern mehr Arbeit. Solcher Unterricht muß vieles vorbereiten und rechnet bei jeder angenommenen Schrittfolge mit Alternativen. Unterricht kann sich nicht durch zentrale Vorplanung "absichern". Aber Orientierung kann helfen, das Vorgehen, ja auch unkonventionelles Vorgehen, besser zu begründen.

2. Die Aufgaben der gymnasialen Oberstufe

Strukturmerkmale der gymnasialen Oberstufe

Die gymnasiale Oberstufe im Land Brandenburg wird als einheitlicher Bildungsgang an Gesamtschulen, Gymnasien und Oberstufenzentren gestaltet. In Brandenburg wird die gymnasiale Oberstufe ohne berufsorientierten Schwerpunkt sowie mit berufsorientiertem Schwerpunkt in den Berufsfeldern Wirtschaft, Technik und Sozialwesen angeboten. Verbindliche Grundlage ist die "Ausbildungsordnung der gymnasialen Oberstufe im Land Brandenburg (AO-GOST)".

Im Kurssystem der gymnasialen Oberstufe ist den Schülerinnen und Schülern die Freiheit eingeräumt, im Rahmen von Pflichtbindungen individuelle Lernschwerpunkte zu setzen.

Die Unterrichtsfächer sind zu Aufgabenfeldern gebündelt, die das Fächerangebot strukturieren. Die Aufgabenfelder sind:

- das sprachlich-literarisch-künstlerische Aufgabenfeld,
- das gesellschaftswissenschaftliche Aufgabenfeld,
- das mathematisch-naturwissenschaftlich-technische Aufgabenfeld.

Die Regelungen der Ausbildungsordnung besagen, daß jedes der drei Aufgabenfelder in allen Schullaufbahnen bis zum Abschluß der gymnasialen Oberstufe einschließlich der Abiturprüfung repräsentiert sein muß. Damit ist der allgemeine Rahmen zur Sicherung von Breite und Einheitlichkeit der individuellen Bildungsgänge abgesteckt und eine allgemeine Grundbildung gesichert. Durch Grund- und Leistungskurse wird das Lernangebot dem Niveau nach strukturiert.

Der Unterrichts- und Erziehungsauftrag

Auch für die gymnasiale Oberstufe gilt grundsätzlich der Bildungsauftrag von Schule, junge Menschen zu unterrichten und zu erziehen. In der Auseinandersetzung mit exemplarisch ausgewählten Themen und Gegenständen der einzelnen Fächer lernen Schülerinnen und Schüler bestimmte Sachverhalte, Fragestellungen, Lösungsmöglichkeiten und Erkenntnisse zu erfassen, darzustellen, zu deuten, zu bewerten und anzuwenden. In der Auseinandersetzung mit Fragen der eigenen Person und der sozialen Umwelt, mit Fragen von gegenwärtiger und zukünftiger existentieller Bedeutung, lernen Schülerinnen und Schüler ihre eigene Identität zu entfalten und sozial verantwortlich zu handeln.

In der schulischen Arbeit sind die Unterrichts- und Erziehungsaufgaben untrennbar miteinander verbunden. Sie beeinflussen sich wechselseitig und haben in Wissen, Können und Verhalten der Schülerinnen und Schüler ihre gemeinsamen Bezugspunkte.

Gleichwohl läßt sich die schulische Arbeit in der gymnasialen Oberstufe durch die doppelte Aufgabe akzentuieren,

- den Schülerinnen und Schülern eine wissenschaftsbezogene Grundbildung zu vermitteln und
- Schülerinnen und Schüler zur selbständigen und verantwortlichen Lebensgestaltung zu befähigen.

In dieser Zielrichtung realisiert sich die allgemeine Studierfähigkeit. Mit ihr erwerben die Schülerinnen und Schüler Kenntnisse und Fähigkeiten, die sie auch in beruflichen Bereichen anwenden oder in diese Bereiche übertragen können.

Wissenschaftsbezogene Grundbildung

Mit zunehmendem Alter sind junge Menschen in der Lage, komplexe Problemzusammenhänge und Fragestellungen aufzunehmen und durch wissenschaftliche, ästhetisch-praktische bzw. technische Verfahrens- und Erkenntnisweisen zu erschließen. Aus diesem Grund ist eine zentrale Aufgabe der Unterrichtsarbeit in der gymnasialen Oberstufe die Vermittlung einer wissenschaftsbezogenen Grundbildung, die sich an den Methoden und Erklärungsmustern der Wissenschaften orientiert.

Schülerinnen und Schüler lernen, planvoll und zielgerichtet zu arbeiten, die Methoden und Techniken der Informationsbeschaffung gegenstandsangemessen anzuwenden und auf der Grundlage sicherer Kenntnisse Problemzusammenhänge zu reflektieren und zu beurteilen.

In Verfahren des forschend-entdeckenden Lernens gewinnen die Schülerinnen und Schüler Einsicht in grundlegende und fachspezifische Verfahren und Methoden und wenden sie auf Problemsituationen und Fragestellungen selbständig an. Dabei ist zu berücksichtigen, daß unter dem Gesichtspunkt der wissenschaftsbezogenen Ausbildung das breite Spektrum möglicher Lernwege erhalten bleibt.

Neben der Kenntnis wesentlicher Strukturen und Methoden von Wissenschaften und ihrer Anwendung lernen die Schülerinnen und Schüler, die Grenzen wissenschaftlicher Aussagen und die Gefährdungen der Spezialisierung in den modernen Wissenschaften und in der Technik zu erkennen und kritisch zu beurteilen.

Selbständige und verantwortliche Lebensgestaltung

Neben der Vermittlung von Kenntnissen und Fähigkeiten im Unterricht befähigt Schule junge Menschen, ihr Leben in bezug zur menschlichen Gemeinschaft und zur Natur selbständig und verantwortlich zu gestalten. Dabei werden sie mit Problemen konfrontiert, die ihre eigenen sowie die Lebenschancen gegenwärtig lebender und zukünftiger Generationen beeinflussen.

Vor dem Hintergrund konkurrierender Modelle individueller Lebensentwürfe und Sinndeutungen, der globalen Bedrohung der Lebensgrundlagen sowie eingeschränkter Lebenschancen für einen Großteil der Menschheit ist es notwendig, junge Menschen in der Schule zur Selbstbestimmung über ihre individuelle Lebensgestaltung, zur Mitverantwortung für die Gestaltung der kulturellen, gesellschaftlichen und politischen Verhältnisse und zum Einsatz für diejenigen zu erziehen, denen aufgrund gesellschaftlicher Bedingungen Selbst- und Mitbestimmungsmöglichkeiten vorenthalten werden.

Die Erziehung zu einer bewußten Lebensgestaltung verlangt ferner von jungen Menschen die Aneignung von Einstellungen und Fähigkeiten,

- eigene Interessen und die Interessen anderer sachbezogen zu vertreten,
- nach der Überzeugungskraft und den Grenzen eigener und fremder Begründungen eines Standpunktes zu fragen,
- eigene Positionen und eigene Kritik in das Gespräch mit anderen zur kritischen Prüfung einzubringen.
- eine Situation, ein Problem, eine Handlung aus der Lage des jeweils anderen, von der Sache Betroffenen, zu sehen.

Unterrichtsorganisatorische und didaktische Voraussetzungen

Die Verwirklichung des Unterrichts- und Erziehungsauftrages setzt unterrichtsorganisatorische und didaktische Regelungen voraus, die der gymnasialen Oberstufe ihr spezifisches Profil geben.

- Voraussetzungen für die Verwirklichung der oben dargestellten Unterrichts- und Erziehungsziele liegen zunächst in der Organisationsstruktur der gymnasialen Oberstufe. Deren Merkmale sind insbesondere
 - die prinzipielle Gleichwertigkeit aller Unterrichtsfächer, die darin begründet ist, daß sie Gleiches oder Ähnliches sowohl zur wissenschaftspropädeutischen Ausbildung der Schülerinnen und Schüler als auch zu deren Selbstverwirklichung in sozialer Verantwortung beitragen können;
 - die außer für das Fach Sport geltende Bündelung des Fächerangebotes in drei Aufgabenfelder;
 - die Gliederung des Unterrichtsangebots in Grund- und Leistungskurse, die die Vermittlung grundlegender bzw. speziellerer wissenschaftlicher Verfahrens- und Erkenntnisweisen erlaubt;
 - die Festlegung von Pflicht- und Wahlbereichen, die eine differenzierte und vielschichtige Realisierungen der inhaltlichen Rahmenanforderungen einer wissenschaftspropädeutischen Ausbildung ermöglichen.
- Voraussetzungen für die Verwirklichung der Unterrichts- und Erziehungsziele liegen ferner in der spezifischen Gestaltung der sozialen Beziehungen in der gymnasialen Oberstufe. Dazu gehören insbesondere
 - ihre Ausgestaltung als eine Stufe des Übergangs für die Schülerinnen und Schüler aus dem sozialen Lernfeld der Schule in die komplexen Sozialordnungen der Hochschule und der Berufswelt ebenso wie des Übergangs aus dem Sozialstatus des Jugendlichen in den des Erwachsenen;
 - die Ermöglichung sozialen Lernens sowohl unter dem Prinzip der Kontinuität (von Fächern, Kursen, Lehrern) als auch dem der Mobilität (bezogen z. B. auf Fach- und Kurswahlen und die sich aus ihnen ergebende unterschiedliche Zusammensetzung der Lerngruppen);

- die Sicherung und F\u00f6rderung von Mitwirkungsm\u00f6glichkeiten der Sch\u00fclerinnen und Sch\u00fcler innerhalb und au\u00dderhalb des Unterrichts;
- die Information, Beratung und p\u00e4dagogische Begleitung der Sch\u00fclerinnen und Sch\u00fcler.
- 3. Voraussetzungen für die Verwirklichung der Unterrichts- und Erziehungsziele liegen schließlich in vielfältigen didaktischen Klärungs- und Abstimmungsprozessen auf der Basis der Erkenntnisse der einschlägigen Fachdisziplinen (vor allem der Fachwissenschaft/Fachdidaktik und der Erziehungswissenschaft). Die dazu erforderlichen Konsensfindungen bzw. Entscheidungen betreffen vor allem die Entfaltung des oben aufgeführten Bildungsauftrages in den einzelnen Fächern der gymnasialen Oberstufe (Aufgaben und Ziele des Faches; Qualifikationen und grundlegende Inhalte, didaktisch-methodisches Konzept; Hinweise zur Leistungsbewertung).

II. Vorläufiger Rahmenplan für das Fach Bautechnik

Vorbemerkung

Die gymnasiale Oberstufe vermittelt durch berufsbezogene und allgemeinbildende Unterrichtsinhalte eine Bildung, die den Anforderungen für die Aufnahme eines Hochschulstudiums und einer vergleichbaren Berufsausbildung entspricht. Die generelle Zielsetzung des Unterrichtsfaches "Bautechnik mit Laborübungen" liegt in einer Einführung in Grundstrukturen der Bautechnik. Es kann nicht Ziel des Unterrichts sein, eine systematisch auf Vollständigkeit bedachte Ausbildung anzustreben,

Insbesondere der Kurs für die Jahrgangsstufe 11.1 hat das Ziel, die Schüler in eine typische Bautechnik-Grundstruktur einzuführen. Dafür wurde die bautechnische Aufgabenstellung "Überbrückung von Öffnungen" gewählt. Die Wahl eines Verbundbaustoffes für die Lösung dieser Aufgabe bereits im Einführungskurs entspricht der Bedeutung dieses Konstruktlonsprinzips in der heutigen Bautechnik.

In einem Einführungskurs kann keine abschließende Behandlung des Themas erfolgen! Insofern weist der Kurs auf bestimmte Abschnitte nachfolgender Kurse bin.

In Hinblick auf die Reihenfolge der nachfolgenden Kurse 1st zu beachten, daß der Kurs "Statik" (11.2) bewußt den Kursen "Holzbautechnik" (12.1) und "Beton/Stahlbeton" (12.2) vorangestellt

Der Kurs "Bauphysik des Wärme- und Feuchteschutzes" ist deshalb in die Jahrgangsstufe 13.1 gelegt, um auf die notwendigen Vorarbelten im Fach "Physik" zurückgreifen zu können.

Der Abschlußkurs "Industrialisiertes Bauen" (13.2) ist so ange-

legt, daß wichtige Telle der vorbergehenden Kurse zur erneuten Anwendung kommen und sich damit für die Schüler unter neuen Ge-

sichtspunkten erschließen.

~ II ~

Kursübersicht:

"Bautechnik mit Laborübungen"

Jahr- gangs- stufe	Kursthemen ⁺⁾	Zeit- richt- werte	Unter- richts- zeit	Seite
11	Uberbrücken von Öffnungen	75	120	ᆏ
	Statik und Festigkeits- lehre	06	120	9
1.2	Holzbautechnik	06	120	11
	Betontechnologie und Stahlbeton	8	120	16
13	Bauphysik des Wärme- und Feuchteschutzes	06	120	22
	Industrialisiertes Bauen (Halle aus Stahlbetonfertig- teilen)	06	120	30

*) Ein Überblick über die einzelnen Lernabschnitte der Kursthemen ist dem Lehrplan für die jeweilige Jahrgangsstufe vorangestellt. Die vorgegebenen Zeitrichtwerte sind Orientierungswerte. Sie geben Hinweise auf den Stellenwert und die Bedeutung, die den Lernzielen und Lerninhalten im Rahmen der zur Verfügung stehenden Unterrichtszeit beigemessen wird. Um den in den Leitlinien formulierten Ansprüchen an die Unterrichtsgestaltung gerecht zu werden, beziehen sich die Zeitrichtwerte lediglich auf 70 % der Unterrichtszeiten.

Bautechnik mit Laborübungen

Schulhalbjahr 11/I

"Uberbrücken von Öffnungen"

1. Fachziele

Stoffbezogene Fachziele

Der Schüler soll

- die Bedingungen der Stahlbetonbauweise kennen und ihre Bedeu-tung für die Bautechnik erkennen,
- in der Gruppe einen Stahlbetonbalken herstellen können.

Verhaltensbezogene Fachziele

Der Schüler soll

- sich bemühen, die Beurteilung von Bauteilen ausgehend von der Kenntnis des Kraftverlaufes vorzunebmen,
- daran gewöhnt werden, Überlegungen bezüglich der Zusammenhänge von Funktion, Material und Konstruktion von Bauteilen anzustel-len,
- erfabren, wie bautechnische Arbeiten in einer Arbeitsgruppe ausgeführt werden.

Lernabschnitte	Zeitricht- werte in Stunden	Seite
1. Öffnungsüberdeckungen	ហ	23
2. Formänderung/Tragverhalten	12	2
 Tragverhalten des Verbund- baustoffes Stahlbeton 	25	ю
4. Grundsätze des Zeichnens in der Bautechnik	4	4
5. Technische und ökonomische Bedingungen der Herstellung eines Stahlbetonbalkens	25	~
6. Beurteilung anderer Tragwerke	4	ഗ
Zeitrichtwerte insgesamt	75	
Unterrichtszeit insgesamt	120	

$\overline{}$	Lernziele	Lerninhalte
	1. Öffnungsüberdeckungen	1. Öffnungsüberdeckungen (5)
	Der Schüler soll konstruktive Lösungen zum Überspannen von Bauwerks- öffnungen verstehen. Teillernziele	Öffnungsüberdeckungen - Anschauungsbeispiele, ~ geschichtliche Entwicklung usw.
	Erkennen, daß das Bauen des Menschen durch das Streben zum Überspannen immer größerer Öffnungen und immer welterer Rüume gekennzeichnet ist	Spannweite, Form und Funktion von Bauwerksüberdeckungen
	An Beispielen aufzeigen können, daß die Spannweite einerseits durch das "Material an sich" bestimmt ist	Tragverhalten und Baustoffwahl
-	Angeben können, daß andererseits die konstruktive Beherrschung des Materials größere Spannweiten er- möglicht	Tragverhalten und konstruktive Anordnung
	Angeben können, daß durch Quer- schnittsänderungen die Spannweite vergrößert werden kann	Tragverhalten und Querschnittsform
	Angeben können, daß durch Änderungen des Tragsystems die Spannweite ver- größert werden kann	Tragverhalten und Tragsystem
	2. Formanderungen/Tragverhalten Der Schüler soll die Wechselwirkung zwischen Belastung und elastischer Formänderung von Tragwerken verstehen,	2. FormEnderungen/Tragverhalten (12)
	Teillernziele	
	Auf Grund von Versuchen. - erkennen, daß die eleastische Form- änderung eine Folge der Belastung eines Tragwerkes darstellt	Dehnungs-, Stauchungs- und Biege- versuche
	- erfassen, daß die Tragfähigkeit bei gleichem Material vom Quer- schultt abhängig ist	Spannungs-Dehnungs-Linlen verschiedener Baustoffe, Hookesches Gesetz
	- erkennen, daß Tragwerke nur Form- änderungen im eleastischen Bereich erfahren dürfen	E-Modul als idealisierte Spannung und als Materialkennwert, zulässige Spannungen, Begründung von unterschiedlichen Sicherheitsbeiwerten
_		

	4. Gr Bal Der S	Grund des t der B				5. Te	Der S nomis	diese	Die al Anfor	beton nungee In de narbei
Lerninhalte	3. Tragverhalten des Verbundbau- stoffes "Stahlbeton" (25)		Druckversuch, Biegeversuch, Bruchlasten, Rißbildung	Navier'sche Dehnungshypothese	Spannungshypothesen nach: Galilei, Leibniz, Belidor, Coulomb, Hooke, Bernoulli	Außeres Moment für Kragarm: $M_a = F \cdot 1$ Inneres Moment: $M_1 = \frac{b \cdot h^2}{6} \cdot G$	XM= O Na= Mi	Dehnungskoeffizienten von Beton und Stahl, Korrosionsschutz	Gerissene Zugzone (Zustand II), innerer Hebelarm, Spannungsblid im Stahlbetonbalken (Entwicklung von Koenen bis DIN 1045) Me = Mi = Fe·Ge·z	Schubkraft, Schubkraftverteilung, Schubbewehrung: Bügel, Schrägaufbie- gungen Haftung Verankerung
Lernziele	3. Tragverhalten des Verbundbau- stoffes "Stahlbeton"	Der Schüler soll die Wirkungsweise des Verbundbaustoffes Stahlbeton und diese Erkenntnis auf das Tragverhalten des Stahlbetonbalkens anwenden.	Teillernziele Erläutern, daß ein Betonbalken (ohne Bewehrung) trotz seiner ge- ringen Zugbeanspruchbarkeit große Widerstandsfähigkeit gegenüber Druckkräften besitzt	Den Dehnungsverlauf in homogenen Balken erkennen und beschreiben	Den Spannungsverlauf in homogenen Balken qualitativ beschreiben und auf Rechteckquerschnitte anwenden können	Den Zusammenhang zwischen äußerem und Innerem Moment als Gleichgewichts- bedingung erkennen		Den Verbund zwischen Stahl und Be- ton in stofflicher Hinsicht begrün- den	Den Verbund zwischen Stahl und Beton in statischer Hinsicht begründen (Momentenbeanspruchung)	Den Verbund zwischen Stahl und Be- ton in statischer Hinsicht begrün- den (Querkraftbeanspruchung)

Lerninhalte	4. Grundsätze des Zeichnens in der Bautechnik (4)	DIN 1356: Arten der Bauzeichnung: Entwurfszeichnungen Ausführungszeichnungen Tellzeichnungen	Art der Darstellungen: Grundrisse, Schnitte, Ansichten	Madstabe, Linienarten, Bemadung: Madeintragung, Madsinien/Mad- Milfslinien, Madbegrenzung, Madscablen, Madschen,	Beschriftung	5. Technische und ökonomische Bedingungen der Herstellung eines Stahlbetonbalkens (25)			Festigkeit, Dichtigkeit, Oberflächen beschaffenheit, Wirtschaftlichkeit (einfache Montage und Demontage, Wiederverwendbarkeit, Materialpreis	Schalplan, Bewehrungsplan, Stahl- liste	Balkenschalung	Herstellung und Einbau eines Bewehrungskorbes	
Lernziele	4. Grundsätze des Zeichnens in der Bautechnik	Der Schüler soll die allgemeinen Grundsätze und die Anforderungen des technischen Zeichnens im Bereich der Bautechnik kennen und anwenden.				5. Technische und ökonomische Bedingungen der Herstellung eines Stahlbetonbalkens	Der Schüler soll technische und ökonomische Bedingungen der Herstellung von Stahlbetonbalken verstehen und diese Erkenntnisse anwenden.	<u>Teillernziele</u>	Die an eine Schalung zu stellenden Anforderungen aufzelgen	Die für die Herstellung eines Stahl- betonbalkens erforderlichen Zeich- nungen anfertigen	In der Gruppe eine einfache Schalung herstellen	In der Gruppe Betonstabstahl ver- arbeiten	

		_	, ,		
Lerninhalte	Bestandteile des Betons, Siebversuch, Sieblinien, Körnungs- ziffer, Wasseranspruch, Zemen Lleimmenge, Normenzemente (Bestandteile, Eigen- schaften) Beton: Herstellung - Verarbeitung - Festigkeit	6. Beurteilung anderer Tragwerke (4)	Platten in Leichtbauweise (Sandwichbauweise), Stahlträger mit einbezogener Betonplatte	Stahlbetonrippendecke, Plattenbalken	Holz, Stahl, Stein und andere
Lenziele	Betontechnologische Grundkenntnisse erwerben und deren Gesetzmäßigkeiten darstellen	6. Beurteilung anderer Tragwerke Der Schüler soll andere Tragwerke beurteilen. Teillernziele	Das Zusammenwirken anderer Baustof- fe in Verbundbauweisen begründen	Tragwerke nach ihrer Querschnitts- form begründen	Das Tragverhalten in der Abhängig-keit vom Baustoff begründen

Bautechnik mit Laborübungen

- 1 -

Schulhalbjahr 11/II

"Statistik und Festigkeitslehre"

1. Fachziele

Stoffbezogene Fachziele

Der Schüler soll statische Verfahren kennen und anwenden können.

Verhaltensbezogene Fachziele

Der Schüler soll befähigt werden

- die in bautechnischen Systemen auftretenden Kräfte zu erkennen und nach Betrag und Richtung festzulegen,
- bautechnische Verfahren der Kraftbeherrschung zum Zwecke der Standsicherheitsbeurteilung von Bauwerken einzusetzen.

Lernabschnitte	Zeitricht- werte in Stunden	Seite
1. Lastenermittlung	10	7
2. Kraftzusammensetzung	15	7
3. Momentensatz	10	80
4. Kraftzerlegung mit Stabtragwerken	20	æ
5, Biegetragwerke	20	σ
6. Festigkeitslehre	15	6
Zeitrichtwerte insgesamt	06	
Unterrichtszeit insgesamt	120	

						(
Lerninhalte	1. Lastenermittlung (10)	Beispiele auf der Grundlage von - Lastannahme für Bauten nach DIN 1055, Bl. 1 - Verkehrslasten nach DIN 1055	- Windlasten nach DIN 1055 - Schneelasten nach DIN 1055	2. Kraftzusammensetzung (15)	Vektorieller Charakter der Kraft Bedeutung der Wirkungslinie einer Kraft Komponentenzerlegung einzelner Kräfte	Komponentenzerlegung mehrerer Kräf- te mit einem gemeinsamen Schnitt- punkt Kraftsystem - Krafteck (Polygon) für - mehrere Kräfte mit gemeinsamen Schnittpunkt und - mehrere Kräfte ohne gemeinsamen Schnittpunkt	Zeichnerische Ermittlung der Resultierenden von parallelen Kräften mit Anwendung z.B. bei der Ermittlung des Schwerpunktes einer zusammengesetzten Fläche
Lernziele	1. Lastenermittlung Der Schüler soll einfache Lasten- ermittlungen durchführen. Teillernziele	Die ständigen Lasten von den Ver- kehrslasten unterscheiden und in der Berechnung anwenden	Die Bestimmungen für die Ermittlung von Wind- und Schneelasten anwenden und diese Lasten berechnen Die Lasten nach Haupt- und Zusatz- lasten unterscheiden	2. Kraftzusaumensetzung Der Schüler soll zeichnerlsche Verfahren der Kraftzusaumensetzung für Kräfte in der Ebene anwenden. Teillernziele	Einen Kraftvektor zeichnerisch und rechnerisch in seine horizontale und vertikale Komponente zerlegen	Für Kräfte mit einem gemeinsamen Schnittpunkt über ihre H- und V- Komponenten Richtung und Betrag der Resultierenden berechnen	Für Kräfte mit einem gemeinsamen Schnittpunkt, für Kräfte obne ge- meinsamen Schnittpunkt und für den Sonderfall paralleler Kräfte die Resultierende nach Richtung und Betrag zeichnerisch ermitteln und die Verfahren erläutern

9

Lerninhalte	Fachwerkbinder - Berechnungsgrundlagen - Binderformen und Stabführung - Belastungszustände - Zeichnerische Bestimmung der Stabkräfte nach Cremona	Rechnerische Bestimmung der Stab- kräfte nach Ritter	5. <u>Biegetragwerke</u> (20)			L. L	- Einzellasten - gleichmäbig verteilter Last - Dreieckslasten und - gemischter Belastung	Querkraftflächen und Momentenlinien	6. Festigkeitslehre (15)	(homogene Baustoffe)	Snanninge-Dehningshungthesen	z.B. nach Coulomb, Navier, Hooke, Bernoulli Allgemeine Biegegleichung		
Lernziele	Einen Kräfteplan nach Cremona an- fertigen können und erkennen, daß der Cremonaplan eine Zusammenfas- sung von einzelnen Kraftplänen dar- stellt	Stabkräfte von einfachen Fachwer- ken mit Hilfe des Ritterschen Schnittverfahrens berechnen	5. Biegetragwerke	Der Schüler soll die aus den äußeren Lasten auftretenden Beanspruchungen kennen und die Methoden zur Ermittlung von Schnittgrößen anwenden,	Teillernziele	Längskraft, Querkraft und Biegemo- mente definieren	Die vorgenannten Schnittgrößen in Jedem Schnitt eines Biegetragwerkes berechnen und in Form von N-, Q- und M-Linien darstellen	Den mathematischen Zusammenhang zwischen Q- und M-Linie begründen und anwenden	6. Festigkeitslehre	Der Schüler soll den Einfluß des Baustoffes und des Tragwerkquer- schnittes auf das Tragwerhalten von Biegetragwerken beurteilen.	Telllernziele	die Biegelehre nennen und die Bie- gegleichung erläutern		
Lerninhalte	Standsicherheitsbeurteilung von Baukörpern durch Lage und Richtung der Resultierenden - Kippsicherheit - Gleitsicherheit - Bodenpressung (zeichnerisch)	~~		Rechnerische Ermittlung des Schwer- punktes einer zusammengesetzten Fläche	Berechnung von Auflagerkräften	•	Rechnerische Kippsicherheitsnachwei-	-		4. Kraftzerlegung bei Stabtrag- werken (20)		Parallelogramm der Kräfte, Mathematische Bestimmung von Komponenten	"Culoannsche" liiisgerade	

Die Gleichgewichtsbedingungen V=.0, H=.0 und M=.0nennen und übertragen können

Das Moment definieren können

Teillernziele

Aktions- und Reaktionskräfte unter-

scheiden

Die Kippsicherheit von Baukörpern berechnen und beurteilen

Die Lage der Resultlerenden von Kräften ohne gemeinsamen Schnitt-punkt und von parallelen Kräften

berechnen

Der Schüler soll mit Hilfe des Momentensatzes die Standsicherheit von Bauwerken beurteilen.

3. Momentensatz

Erkennen, daß man durch schrittweises Vorgehen eine Kraft auch in mehrere Komponenten zerlegen kann

Erkennen, daß man über die Kraft-zerlegung nur zwei Komponenten bestimmen kann, sofern deren Rich-

Der Schüler soll die Bedingungen der Kraftzerlegung anwenden.

reillernziele

4. Kraftzerlegung bei Stabtrag-werken

tungen öder deren Beträge oder Richtung bzw. Betrag jeweils einer Kraft bekannt sind

8

Die Standsicherheit von einfachen Baukörpern infolge der Wirkung ihrer Resultierenden beurteilen

Lernziele

Lerninhalte	Flächenträgheitsmoment Steinerscher Satz Hauptachsen und Hauptträgheits- momente Widerstandsmomente	Spannungsnachwelse für Zug, Druck, Blegung Knicken gerader Stäbe (qualitativ) Die vier Eulex-Fälle (") Knickspannungsnachweis nach dem Omega-Verfahren Spannungsnachweise für ausmittigen Kraftangriff (ohne und mit gerissener Zugzone)		
Lernziele	Den Einfluß der Querschnittsform auf das Tragverbalten erkennen und mit Hilfe des Fläcbenträg- heitsmomentes begründen	Die Spannungsnachweise für Zug-, Oruck-, Biege- und Knickbeanspru- chung führen		

- 12

- 11

Bautechnik mit Laborübungen

Schulhalbjahr 12/I

"Holzbautechnik"

1. Fachziele

Stoffbezogene Fachziele

Der Schüler soll

- die spezifischen Eigenschaften des Werkstoffes Holz kennen,
- Konstruktionsweisen der Holzbautechnik kennen und beurteilen,
- im Rahmen der Holzbautechnik anzuwendende Messungen und Werkzeuge handhaben können.

Verhaltensbezogene Fachziele

Der Schüler soll befähigt werden

- Holzbaukonstruktionen nach technischen, ökonomischen und ästhetischen Gesichtspunkten zu beurteilen,
 - Holz entsprechend den besonderen Elgenarten dieses Bau-materials zu bearbeiten.

Lernabschuitte	Zeitricht- werte in Stunden	Seite
1. Holz als Baustoff	22	12
2. Dachformen und Dachaus- mittlung	æ	13
3. Dachkonstruktionen	12	13
4. Ingenieurholzbau	20	13
5. Herstellung eines Binders	16	14
6. Nutzung und Gestaltung von Holzbauwerken	12	14
Zeitrichtwerte insgesamt	06	
Unterrichtszeit insgesamt	120	

Lernziele	Lerninhalte
1. Holz als Baustoff Der Schuler soll den Aufbau des	1. Holz als Baustoff (22)
Eigenschaften verstehen. Teillernziele	
Das Wachstum des Holzes verstehen	Kambium als Ort des Wachstums, Zell- teilung, Wachstumsrhythmen, Ernäh- rung aus dem Boden (physikalische Gesetze der Nährstoffleitung, Nähr- stoffleitungsbahnen), Ernährung aus der Euft (Nährstoffaufnahme, Photo- synthese - Assimilation)
Den makroskopischen Aufbau des Holzes verstehen	Querschnitte, Longitudinalschnitte (tangential und radial), Xylem, Kambium, Phloem
Den mikroskopischen Aufbau des Holzes verstehen	Morphologie (Histologie, Zytologie) und Chemie des Holzes (chemischer Aufbau von Zellwand, Mittel-, Primär-, Sekundär- und Tertiärla- melle, Zellulose und Zelluloscbe- gleiter, Lignin und Pektine, Gerb- säure und Fette, konservierende Wirkstoffe im Holz
Die Notwendigkeit des Holzschutzes erkennen, Holzschützmittel kennen und ihre Wirkungsweise verstehen	Holzgefährdung durch Pilze, Insekten und Feuer; konstruktiver Holzschutz – chemi- scher Holzschutz; Imprägnierbarkeit, Imprägnierver- fahren
Das Schwind- und Quellverhalten des Holzes deuten	Hygroskopizität des Holzes, Anpassungsgleichgewicht, tropfbare und gebundene Zellflüssigkeit (Waalsche Kräfte, Waserstoffbrückenbildung), Holztrocknung, Volumenänderung aufgrund hygroskopischer Kräfte
Die unterschiedliche Beanspruchbar- keit des Holzes kennen und verste- hen	Biege-, Zug-, Druck- und Scherfestig- keit; richtungsbedingte, histologisch und hygroskopisch bedingte Belastbar- keitsdifferenzen
Die wichtigsten Bauhölzer nennen, unterscheiden und beurteilen	Nord- und mitteleuropäische Rauhöl- zer
Bauhölzer aufgrund von Klassifizie- rungssystemen beurteilen	Enro-Norm, DIN-Normen (z.B. DIN 4074)

		`
Lernziele	Lerninhalte	Lernziele
2. Dachformen und Dachausmittlung	2. Dachformen und Dachausmittlung (8)	Stabkräfte ermitteln un sungen bestimmen
Der Schüler soll Holzdachformen kennen und die Methoden der Dachaus- mittlung anwenden.		Ingenteurholzverbindung ihre Reallsteung in Kn im Zusammenbang mit den
Teillernziele		nen Belastbarkeitskrite stehen und ihre zweckmä
Die bekanntesten Dachformen darstellen, klinatisch bedingte Ausprägungen begründen können und Beispiele aus der Baugeschichte kennen	Flach-, Pult-, Sattel-, Walm- und Schalendach	dung beurteilen Gestaltung und Aufbau d im Ingenieurholzleimbau
Die Dachbruchlinien konstruieren und ibre wahren Längen ermitteln	Dachteile, Dachausmittlung	Arbeitstechnische Vorau für den Ingenieurholzle stehen und beurteilen
3. Dachkonstruktionen	3. <u>Dachkonstruktionen</u> (12)	
Der Schüler soll herkömmliche Dach-		5. Herstellung eines Bi
Tragvèrhalten beurtoilen,		Der Schüler soll in der einen Binder herstellen
Teillernziele		Teillernziele
Den Kraftfluß in der Dachkonstruk- tion erklären	Prinzipdarstellung der Q-, N- und M-Flächen am Sparren-, Keblbalken- und Piettendach	Die für die Bearbeitung chen Werkzeuge kennen u Wirkungsweise verstehen
Die unterschiedliche Anwendung von Kehlbalken- und Pfettendächern aus statischer Sicht begründen	Dachausbauten, Sparrenauswechslung, Grundrißformen, Dachneigungen	Bei der Auswahl des Hol struktiven Bedingungen tigen
Die behandelten Tragwerke darstellen	Konstruktionszeichnung zu einem Binder (einschließlich Berechnung der Abbundgrößen)	Die Hölzer mit einer Ge von ± 1 mm anreißen
		Die Hölzer mit einer Ge von ± 2 mm zusämmenfüge
4. Ingenieurholzbau	4. Ingenieurholzbau (20)	
Der Schüler soll wesentliche Aspekte des Ingenieurholzbaues kennen, Konstruktionsmöglichkeiten dieses Bereiches verstehen, anwenden und		6. Nutzung und Gestaltu Holzbauwerken
bourtellen,		Der Schüler soll Holzba ökonomischen und Esthet
leilleinziele Ingenieurholzbautragwerke kennen und nach ihren statischen Systemen unter- scheiden	Stabtragwerke/Fachwerke, statisch bestimmte und statisch unbestimmte Systeme im Ingenieurholzbau	אַרכט נאַסיייא יפּיין ספּמז יפּידאים

,	
Lernziele	Lerninhalte
stabkräfte ermitteln und Stababmes- sungen bestimmen	Lastenermittlung, Anwenden des Cremona-Planes, Ritter-Schnittver- fabren, Bemessung
ngenieurholzverbindungen kennen, hre Realisierung in Knotenpunkten m Zusammenhang mit den verschiede- en Belastbarkeitskriterien ver- itehen und ihre zweckmäßige Anwen- lung beurteilen	Dübel-, Bolzen- und Stabdübel-, Nagel-, Schrauben- und Leimverbindum- gen (DIN 1052)
iestaltung und Aufbau der Bauteile m Ingenieurholzleimbau kennen und erstehen	Holzauswahl, Lamellen, verleinte Trägersysteme, gekrümmte Bauteilc
irbeitstechnische Voraussetzungen ür den Ingenieurbolzleimbau ver- stehen und beurteilen	Beschaffenheit der Leimfläche, Paß-genaulgkeit, Kriterien der Klebstoffauswahl und der Klebstoffver-arbeitung (DIN 68 141 u.a.)
. Herstellung eines Binders (16)	5. Herstellung eines Binders (16)
er Schüler soll in der Gruppe sinen Binder herstellen.	
<u>'eillemziele</u>	
le für die Bearbeitung erforderli- then Werkzeuge kennen und in ihrer Tirkungsweise verstehen	Wirkungsweise, Pflege, Unfallgefah- ren
bei der Auswahl des Holzes die konstruktiven Bedingungen berücksich- Ligen	Wachstumsrichtungen, Anschlußlä- chen, Verformungen, Holzarten
mit einer Genaulgkeit anreißen	
mit einer Genaulgkeit zusämmenfügen	
Nutzung und Gestaltung von Holzbauwerken	6. Nutzung und Gestaltung von Holzbauwerken (12)
oer Schüler soll Holzbauwerke nach Skonomischen und Asthetischen Ge- sichtspunkten beurteilen,	

- 14 -

1 C4

Lerninhalte	Traufwinkel, Raumhöhen, Ausbau- möglichkeiten	Konstruktionsgewicht, Gesamtkosten- relationen, Transportprobleme	Historische und moderne Beispiele (Medieneinsatz, Exkursionen)	Historische und moderne Beispiele (Medieneinsatz, Exkursionen)				
Lernziele	, <u>Teillernziele</u> Die Nutzungsmöglichkeiten in Ab- hängigkeit von der Dachform beurtei- len	Die wirtschaftlichen Überlegungen hinsichtlich der Anwendung von Ingenieurholztragwerken gegenüber Tragwerken aus Stahl und Stahlbeton, besonders beim Vorliegen großer Spannweiten, verstehen	Die durch den Nolzbau gegebenen Gestaltungsmöglichkeiten erleben und die damit aufgenommenen Werte als lebensbereichernd in den kulturelten Zusammenhang einordnen	Beispiele für die material-, funktions- und umweltgerechte Verwendung des Baustoffes Holz nach ökonomischen und ästhetischen Kriterien beurteilen				

- 17 -

Bautechnik mit Laborübungen

Schulhalbjahr 12/II

"Betontechnologie und Stahlbeton"

1. Fachziele

Stoffbezogene Fachziele

Der Schüler soll

- betontechnologische Untersuchungen durchführen und aus-
- Einsicht in Zusammenhänge der Stahlbetontechnik gewinnen.

Verhaltensbezogene Fachziele

Der Schüler soll befühigt werden oder bereit sein

- betontechnologische Fragen sorgfältig zu analysieren und zu klären,
- die Verantwortung zu erkennen, die eine funktionsgerechte Anordnung der Bewehrung erfordert,
- bei der Bemessung von Stahlbetonbauteilen das ökonomische Prinzip zu beachten,
- den schalungstechnischen Zusammenhang zwischen Funktion, Formgebung, Materialauswahl und Herstellungsverfahren von Stahlbetonbauteilen zu erfassen,
 - betontechnologische Aufgaben in Teamarbeit zu lösen.

Lernabschnitte	Zeitricht- werte in Stunden	Seite
1. Betontechnologie	35	17
2. Betonstabl	10	19
3. Verbundbaustoff Stahlbeton	35	20
4. Betonschalungen	10	21
Zeitrichtwerle insgesamt	06	
Unterrichtszeit insgesamt	120	

Lerninhalte	1. Betontechnologie (35)			Geologische und geographische Voraussetzungen Robstoffe und ihre Gewinnung Aufbereitung (NaD-, Trockenverfahren) Ennverfahren (Dreh-, Schachtofen) Klinkerphasen	Hydratationsstufen und deren Theorien	Eigenschaften: Festigkeiten Volumenänderung (infolge chemischer Reaktion) Sedimentieren Schrumpfen Schrumpfen Schrumpfen Schrumpfen Warnedehnung Wasserdurchlässigkeit Beständigkeit gegen chemische und physikalische Einflüsse Prüfverfahren: z.B. Mahlfeinheit Spezifische Einflüsse Spezifische Oberfläche Spezifische Oberfläche Schlemm- und Sedimentverfahren Raumbeständigkeit Erstarrungsbeginn Festigkeiten (Normenprüfung, Schnellprüfung) Dichte (Reindichte, Schütt- dichte)	Erhärtungsgeschwindigkeit Hydratationswärme Widerstand gegen physikalische An- griffe (uochanische Einwirkungen Frostsicherheit, Hitzbeständigkeit) Widerstand gegen chemische Angriffe (Säuren, Sulfate, Chloride) Frühfestigkeit Ausschalfristen
Lernziele	1. Detontechnologie	Der Schüler soll die betontechnologischen Gesetzmäßigkeiten verstehen, auf konkrete Fälle übertragen und diese beurtellen.	Teillernziele	Die Zusammensetzung der Zementarten und deren Herstellungsverfahren verstehen	Die chemischen Reaktionen bei der Erhärtung des Portlandzementklin- kers versteben	Die Eigenschaften der Zementarten erkennen und mit Hilfe geeigneter Prüfverfahren bewerten	Im Hinblick auf bauphysikalische, bauchemische und ökonomische Be- dingungen die Auswahlkriterien für die Anwendung der Zementarten begründen

Lerninhalte		Lastabhängige Verformung: Elastische Verformung Kriechen Lastunabhängige Verformung: Schwinden Quellen Verformung durch Temperatur- schwankungen Thaulowversuch, Thaulowversuch)	Bestimmung der Rohdichte Ermittlung des Zementgehaltes Luftporengehaltsprüfung Druckfestigkeitsprüfung: Bauwerksproben Probekörper Nennfestigkeit Serlenfestigkeit Biegezugprüfung Spaltzugfestigkeitsprüfung Wasserundurchlässigkeitsprüfung	2. Betonstahl (10)	U-Stahl K-Stahl Kristallgitterveränderung Beeinflussung des Proportionalitatsbereiches Streckgrenze Begrenzung der Dehnung Erböhung der Beanspruchbarkeit Verringerung der Querschnitte Material- und Gewichtsersparnis
Lernziele	Die Aufbereitungsverfahren in der Betonbersteilung unterscheiden Die Grundsätze der Verarbeitung und Nachbehandlung des Betons verste- hen und begründen	Die unterschiedlichen Ursachen von Formänderungen des Betons erkennen und begründen. Ausgewählte Frisch- und Festbeton- untersuchungen durchführen und ihre	Erljebnisse auswerten	2. Betonstahl Der Schüler soll das differenzierte Tragvermögen des Betonstahles in- folge der unterschledlichen Moleku- lar- und Oberflächenstruktur ver- stehen und beurtellen. Teillernziele	Die Veränderungen der Spannungs- dehnungslinie des Betonstahles in- folge Nachbehandlung begründen Das unterschiedliche Tragverhalten der Betonstähle im Hinblick auf lhre Verwendung abwägen
Lerninhalte	Organische Verunreinigungen (z.B. Humussäuren) Nitrate, Säuren, Sulfate) Zementgel Hydratwasser Kapillarwasser (Kapillarporen)	unhydratisierter Zement Festigkeit Gesteinsart Dichte, Rohdichte, Festigkeit Abnutzwiderstand Kornform Oberflächenbeschaffenheit Witterungsbesthndigkeit Volumenänderungen	Kornfraktionen Größtkorn, Feinkorn Hohlraumgehalt Rechnerische Ermittlung von Sieb- linien Stetige, unstetige Kornverteilung (Ausfallkörnung) Uberkorn, Unterkorn Fullerparabel (Idealsieblinie) Methoden der Sieblinienverbesserung Feinbaltsziffer:	Abramssches Gesetz F-Wertverfahren nach Bummel D-Summenverfahren nach Rothfuchs Betonarten Betonfruppen Betonfrstigkeitsklassen (Mindestzementmengen) Betone mit besonderen Eigenschaften Zusammensetzen des Betons (Stoff-	raumrechnung) Zemen Leimdosierung Erhärtungszeit Erhärtungstemperatur (Reifegrad) Verflüssiger Verzögerex Luftporenbildner
Lernziele	Das Zugabewasser auf beton- und bewehrungsschädigende Bestandteile untersuchen Den Einfluß des Wertes auf die Eigenschaften des Wemensteines erkennen und den Fwert nach den angestrebten Betoñeigenschaften	ermittein Zuschläge auf ihre stofflichen Eigenschaften hin untersuchen	Zuschlaggemische im Binblick auf die Betonherstellung beurteilen	Die Stoffanteile für festgelegte Frisch- und Festbetoneigenschaften ermittelu	Die Einflüsse der Zusatzmittel auf die Betoneigenschaften kennen

- 19 -

- 18 -

	Ein ble tei	Ein gan gen gen gen Sta	_	Der ken und tei	Die	Die de
Lerninhalte	Betonstabstähle Betonstahlmatlen Kurznamen Kurzzeichen Querschnittsprüfung Prüfung der Oberflächengestalt Zugversuch	3. Verbundbaustoff Stahlbeton (35)	Feldmomente . Stützmomente	Abstände von Bewehrungsstäben Betondeckungen in Abhängigkeit von verschiedenen Einflußgrößen Kriterien für die Verankerung von Betonstählen Krümmingsradien Bewehrungsstöße	Allgemeine Voraussetzungen für die Bemessung biegebeanspruchter Bauteile Spannungs- Dehnungsverhalten des Betons Verträglichkeitsbedingungen Bruchzustand Gebrauchszustand Sicherheitsfaktoren	Formänderungen infolge: Lasteinwirkungen Kriechen und Schwinden Temperatureinflüssen Beschränkung der Formenänderungen im Hinblick auf: Durchbiegung Fißbreite Stahlspannungen
Lernziele	Die verschiedenen Betonstahlsorten kennen und den entsprechenden Verwendungszwecken zuordnen Betonstahlprüfverfahren kennen und ihre Ergebnisse auswerten	3. Verbundbaustoff Stahlbeton Der Schüler soll das Trageverhalten von biegebeanspruchten Stahlbeton- bauteilen verstehen und beurteilen. Teillernziele	Aus dem Kraftfluß im Stahlbetonbau- teil die Grundsätze der Bewehrungs- führung ableiten	Richtlinien für das Bewehren kennen und begründen	Die Vorbedingungen für die Bemes- sung verstehen und interpretieren	Die materialspezifischen Formände- rungen kennen und ihre Auswirkungen auf die Bemessung berücksichtigen

Lerninhalte	Z.B. kh-Verfahren Zugkraftdeckung: Zugkraftlinien Versatzmaße Zugkraftdeckungslinie Schubbemessung: Schubbereiche Schubbereiche Schubbereinngsfläche Schubbewehrungslinie	Normgerechte Bewehrungszeichnung Stahlliste	Konstruktive Vorgaben: Spannweiten Querschnittsabmessungen Wirtschaftlichkeitsbetrachtungen Formgebung	4. Betonschalungen (10)	. :		Lotrechte und waagerechte Lasten und Kräfte Betoniergeschwindigkeit Verdichtungsart Schalungsdruck Funktionsbedingte Schalungselemente Ausschalungsbedingungen Ausschalfristen nach DIN 1045	Sichtbeton mit verschiedenartiger Oberflächenstruktur Ästhetische Gesichtspunkte	Konstruktive Gesichtspunkte Materialabhängige Schalverfahren Schalungssysteme	Konstruktionselemente Variable Einsatzmöglichkeit Schalzeiten Einsatzhäufigkeit Beschaffungskosten
Lernziele	Ein Verfahren zur Bemessung von blegebeanspruchten Stablbetonbau- teilen kennen und anwenden	Einen Bewehrungsplan unter Berück- sichtigung von Eingangs- und Aus- gangsgrößen der Bemessung anferti- gen und auswerten	Stahlbetonbauteile nach konstruktiven, ökonomischen und ästhetischen Gesichtspunkten beurteilen	4. Betonschalungen	Der Schüler soll Betonschalungen kennen und ihren funktionsgerechten und wirtschaftlichen Einsatz beur- teilen.	Teillernziele	Die Kriterien der Standsicherheit von Betonschalungen erfassen	Die Schalung als Gestaltungselement der Betonoberfläche verstehen	Möglichkeiten der Formgebung durch die Betonschalung überblicken und auf die vielfältigen Anwendungsge- biete übertragen	Schalungskonstruktionen unter öko- ncmischen Aspekten bewerten

- Y7 -

~ 23

Bautechnik mit Laborübungen

Schulhalbjahr 13/I

"Bauphysik des Wärme- und Feuchteschutzes"

1. Fachziele

Stoffbezogene Fachziele

Der Schüler soll

- erkennen, daß raumumschließende Bauteile so beschaffen sein müssen, daß sich ein behaßliches Wohnklima ergibt und daß Beeinträchtigungen der Gesundheit und Schäden am Bauwerk vermieden werden,
- begreifen, daß als Folge eines guten Wärme- und Feuchteschutzes auch Einsparungen von Energie erzielt und durch Schadensverhütung Volksvermögen erhalten wird.

Verhaltensbezogene Fachziele

Der Schüler soll sich bemühen,

- bei der Beurteilung von bautechnischen Konstruktionen neben anderen Kriterien die Anforderungen des Wärme- und Feuchteschutzes zu berücksichtigen,
 - die Verantwortung der Planenden bzw. der Ausführenden von Bauwerken für die Gesundheit der zukünftigen Bewohner zu würdigen,

Lernabschnitte	Zeitricht- werte in Stunden	Seite
1. Mensch, Klima, Wohnbehaglichkeit	9	23
2. Wärme als Transportproblem	10	23
3. Wärmeschutz îm Mochbau	18	24
4. Wärmespeicherfähigkeit, Raumklima	12	25
5. Dampfdiffusion als Transport- problem	12	26
6. Kondensationsfeuchte in Bauteilen	14	27
7. Bauphysikalische Beurteilung von Konstruktionen	18	29
Zeitrichtwerte insgesamt	06	
Buterrality ort inspessant	130	

Lernziele	Lerninhalte
1. Mensch, Klima, Wohnbehaglich- keit	1. Mensch, Klima, Wohnbehaglich- keit (6)
Der Schüler soll verstehen, daß der Mensch durch objektive Nessungen zu ergründen versucht, welche Bedingingen ein behagliches und gesundes Wohnen ermöglichen.	;
Teillernziele	
Erkennen, daß zwischen Körpertemperatur, Wohlbefinden und Umwelttemperatur Zusammenhänge bestehen	Körpertemperatur Verdunstung Wärmeableitung Wärmeableitung Wärmeabstrahlung Umwelttemperatur
Die atmosphärischen Einflüsse auf den Menschen begreifen	Luftdruck Luftfeuchtigkeit in Abhänglgkcit der Lufttemperatur (absolut und relativ) Luftbewegung
Wohnräume in klimatischer Hinsicht beurtoilen	turverteilung im Ra tur der raumunschlite ichkeitsfelder z.B. r, r, rd und Liese
	(siehe hierzu Hinweis Nr. 1)
2. Wärme als Transportproblem	2. Wärme als Transportproblem (10)
Der Schüler soll die Wärmeausbrei- tung als Transportproblem verste- hen,	
<u>Teillernziele</u>	
Erfahren, daß Wärme sich vom Ort böherer Temperatur zum Ort niede- rer Temperatur ausbreitet	Temperatur - Wärme - Wärmeenergie Molekularbewegung Brown'sche Bewegung Wärmedehnung Absoluter Nullpunkt Kelvintemperatur
Erkennen, daß Wärmeausbreitung im Bauwesen gleichzeitig durch Wärme- strahlung, Wärmeleitung und Kon- vektion unterschiedlicher Intensi- tät erfolgt	Versuche der Wärmeausbreitung 2.B. erweiterter Strahlungswürfel nach Leslie Untersuchung von Ueizungssystemen nach Art der Wärmeausbreitung

Lerninhalte	Δη ^β = 1 · Δ ^μ · · · · · · · · · · · · · · · · · · ·	Wärmeschutzverordnung: maximale Wärmedurchgangskoeffizi- enten für einzelne Außenbauteile, Tabelle 2 Anlage i der Wärme- schutzverordnung	Warmedammachweise für Einfamilien- haus unterkellert (beheizt) nicht unterkellert hoher und normaler Fensterflä- chenanteil insgesamt nach den Verfahren 1 und 2	Klima von Innenräumen Außenklima Standort: geographisch, topographisch Lage zu den Himmelsrichtungen	4. Warmespeicherfähigkeit, Raum- klima (12)
Lernsiele	Den Temperaturverlauf in mehrschichtigen Bauteilen rechnerisch erfassen und zeichnerisch darstellen sen und zeichnerisch darstellen Erkennen, daß Energieeinsparung bei Gebäuden mit abnehmender Transmissionsfläche bei konstantem umbauten Raum erfolgt	Erfassen, daß mit steigendem Fensterflächenanteil die ebenfalls steigenden Transmissionswärmeverluste durch verstärkte Dämmung Ubriger wärmeübertragender Außenverden	Die Nachweisverfahren für Wohnbau- ten entsprechend der Wärmeschutz- verordnung beherrschen	Erkennen, daß die der Wärmeschutz- verordnung zugrundegelegten Klima- daten statistischer Art sind und nicht die speziellen Klimabedin- gungen des jeweiligen Gebäudes be- rücksichtigen	4. Wirmespeicherfähigkeit, Raum- klima Der Schüler soll den Einfluß raum- umschließender Bauteile bei Insta- tionärem Wärmetransport auf das Raumklima beurteilen.
Lerninhalte	Warmeubergang in Abbängigkeit von der Luftgeschwindigkeit Wärmeleitung in Abbängigkeit vom Baustoff Definition der Begriffe Wärmedurch- laß und Wärmedurchgang Abbängigkeit der Wärmeleitfällig- keit von der Dichte des Stoffes Art, Größe und Verteilung der Poren mineralogischen Struktur der festen Grundstoffe Feuchtigkeit des Stoffes	3. Wärmeschutz im Hochbau (18)	Wärmedurchlaß in Abhängigkeit von: Schichtdicke Durchlaßzeit Temperaturgefälle Wärmeleitzahl A	, E 5 176'	$k = \frac{1}{\frac{1}{\alpha_1} + \frac{1}{\Lambda} + \frac{1}{\alpha_n}}; \frac{1}{\Lambda}; \frac{1}{\lambda}$ $Q \sim \Lambda \vartheta$ $\operatorname{sofern}(\lambda; \frac{1}{\alpha}; t; \Lambda) \text{ konstant}$
Lernziele	Erkennen, daß der Wärmetransport durch Bauteile neben einem Wärme- übergang hauptsächlich infolge Wärmeleitung stattfindet Erfahren, daß die Wärmeleitfähig- keit ein Stoffcharakteristikum ist	3. Wärmeschutz im Hochbau Der Schüler soll quantitative Nachweisverfahren des stationären Wärmetransportes verstehen und an- wenden.	Teillernziole Erkennen, daß die raumumschließenden Bauteile dem Wärmestrom Widerstand leisten Die Einflußgrößen des stationären Wärmetransportes verstehen	Den Wärmedurchlaß und Wärmedurch- gang sowie deren Widerstände für mehrschichtige Bauteile berechnen	Versteben, daß der Wärmetransport bei stationärem Wärmedurchgang mit zunehmender Temperaturdifferenz proportional anstoigt, sofern die anderen Einflußgrößen konstant bleiben

25

- 24

- 27 -

Lerninhalte	Teildruckmessung des Wasserdampfes in einem Versuch (siehe hierzu Binweis Nr. 3) Partialdruck der einzelnen Gasanteile unter Normalbedingungen (Bezüglich der allgemeinen physikalischen Begründung zu den hier wird auf den Leistungs- bzw. Grundkurs Physik der Jahrgangsstufe 12.1 verwiesen.)	Absolute Luftfeuchtigkeit Relative Luftfeuchtigkeit Sättigungsdampfdruck Partialdruck in Abhängigkeit der relativen Feuchte Beurteilung des Versuches Teildruck messung des Wasserdampfes	Begriff der Wasserdampfdiffusion Diffusionsversuche mit Baustoffen Stefansche Gleichung Definition des Diffusionswider- standes 🏴 [m]	6. Kondensationsfeuchte in Bauteilen (14)	Interpretation des stationären Dampfstromes $g = \frac{m}{A \cdot t} \begin{bmatrix} kg \\ m^2 \cdot h \end{bmatrix}$	in Abbängigkeit von: Stoffeigenschaften Eigenfeuchte Schichtdicke Durchhaßzeit Lufteruck Lufteruchtigkeit Luftfemperatur Partialdruck Dampfdruckgefälle
Lernziele	Verstehen, daß die Gasbestandteile der Luft jeweils unter einem par- tiellen Druck stehen, deren Summe dem atmosphärischen Luftdruck entspricht	Nachweisen, daß der Partialdruck des Wasserdampfes mit zunehmendem absoluten Feuchtigkeitsgehalt in der Luft anstelgt Begründen, weshalb bei unterschiedlichen Partialdruckverhältnissen ein Abwandern von Wasser in Dampfform in Richtung des Druckgefälles besteht	Nachweisen, daß sich auch durch raumumschließende Bauteile hindurch dieser Ausgleich, der als Wasser- dampfülfusion bezeichnet wird, vollzieht	6. Kondensationsfeuchte in Bauteilen Der Schüler soll quantitative Nachwelsverfahren des Wassertransportes infolge Diffusion verstehen und anwenden.	Teillernziele Erkennen, daß mit der Dampfstrom- dichte g die je Zeit- und Flächen- einheit durch eine Konstruktion diffundierende Wasserdampfmenge beschrieben wird	
Lerninhalte	Spezifische Wärmckapazität Dichte Wärmespeicherfähigkeit Wärmespeicherwert (siehe hierzu Hinweis Nr. 3) Heizvorgänge Sonneneinstrahlung Schichttemperaturverlauf in zeit- licher Betrachtungsweise	Halbwertzeit Temperaturverlauf in Bauteilen bei periodisch schwankender Außen- und Innentemperatur Temperaturträgheit Temperaturamplitudendämpfung Phasenverschiebung Farbe und Oberflächenbeschaffenheit von Bauteilen	Wahl der Baustoffe Lage und Wärmedurchlaßwiderstand der Dämmschichten in Bauteilen Massivbauweise – Leichtbauweise	5. Dampfdiffusion als Transport- problem (12)	Zustandsgrößen p, V, T beschricben durch die Gesetze von Boyle und Mariotte, Gay-Lussac und die allgemeine Zustandsgle:- chung	Gasmassen Spezifische Gaskonstante Mol eines Gases Normalvolumen Bestandteile der Luft (Volumen- und Massenprozente)
Lernziele	Teillernziele Die Einflußgrößen der Wärmespei- cherfühigkeit von Baustoffen ken- nen und Wärmespeicherwerte von Bauteilen ermitteln Aufheiz- und Abkühlvorgänge von Bauteilen in ihrem instationären Ablauf beschreiben können	Den Einfluß periodisch verlaufender instationärer Vorgänge auf das Raumklima beurteilen können ben Einfluß der Oberfläche in Bezug auf die Temperaturstrahlung beurteilen	Die Verbesserung des Raumklimas bei instationären Vorgängen durch kon- struktive Maßnahmen begründen	5. Dampfdlffusion als Transport- problem Der Schüler soll die Wasserdampf- diffusion als Transportproblem verstehen.	Verstehen, daß die uns umgebende Lufthülle unter Druck steht, die durch die Zustandsgrößen Druck, Temperatur und Volumen beschrieben werden kann	Verstehen, daß die Euft eine Mischung aus Wasserdampf und anderen Gasen ist, die man als trockene Luft bezeichnet

		Eine Feucht diese auswe diese auswe 7. Bauphysi von Kons Der Schuler nach den be schen Gestc beurteilen. Teillernzie Wände, Deck unter Berüc schutzes, d des Wohnklit	Warmedehnun nen und beu Transmission Wohngebäuden wirtschafti schutzes bei
a + [chairas.]	reintinat ve	Vergleich der Gemeinschaftsglei- chung: (vergleiche hierzu Hinwels Nr. 4) Wärmestrom $q = \frac{1}{\sqrt{1}} + \frac{d_1}{\sqrt{1}} + \frac{d_2}{\sqrt{2}} + \dots \frac{1}{\sqrt{1}}$ und $g = \frac{1}{\sqrt{1}} + \frac{d_1}{\sqrt{1}} + \frac{d_2}{\sqrt{2}} + \dots \frac{1}{\sqrt{2}}$ $g = \frac{1}{\sqrt{1}} + \frac{d_1}{\sqrt{1}} + \frac{d_2}{\sqrt{2}} + \dots \frac{1}{\sqrt{2}}$ $g = \frac{1}{\sqrt{1}} + \frac{d_1}{\sqrt{1}} + \frac{d_2}{\sqrt{2}} + \dots \frac{1}{\sqrt{2}}$ und deren Fortschreibung durch $\beta' = \frac{\beta}{\sqrt{1}} + \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}}$ bis zum Dampfdurchgang $k_D = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}}$	Dampfschema: Darstellung der Linien des Partial- und Sättigungsdrucks im Maßstab der Bauteile und im Maßstab der Diffusionswiderstände p \(\frac{\lambda}{\rangle} \) ps Auswertung von Wasserdampfdiffusionsdiagrammen Glaserverfahren Eichlerverfahren Problem der Zonenbegrenzung
lernzie]e		Erkennen, daß die Abhängigkeit des Bampfstromes vom Stoff und von den Klimadaten analog zur Wärmestrom-dichte definiert wird	Den Druckverlauf des stationären Diffusionsstromes in mehrschichtigen Bauteilen berechnen und darstellen Begründen, daß der Partialdruck nicht über den Sättigungsdruck steigen kann Erkennen, daß Kernkondensation auftritt, wen der Partialdruck den Sättigungsdruck erreicht hat Sich im Bauteil ergebende Kondensationsebenen und Kondensations- zonen ermittein und erläutern

- 28 -

Lerninhalte	Ein- und ausdiffundierende absolute Feuchigkeitsmenge Reduzierung der formalen Dampfstromdichte auf: $p_1 - p_2 = \frac{1}{d_1 \cdot \mathcal{H}_1 \cdot N_1} + \cdots \cdot d_n \cdot \mu_n \cdot N_n$ Klimadaten Winter - Sommer Lage der Dämnschichten Notwendigkeit von Dampfsperren	7. <u>Bauphysikalische Beurteilung</u> <u>von Konstruktionen</u> (18)	Bauteile: einschichtig mehrschichtig innen-, mitten-, außengedämmt mit und ohne Sperrschichten Wärmedehnung von	warmedennung von: massiven Flachdächern Fassaden aus unterschiedlichem Material (Mauerwerk, Sichtbeton, Metall) Dichte und Farbe	Klimadaten Angemessene Transmissionswärnever- luste über den Zeitraum einer Be- heizungsperiode Kostenvergleich zwischen Energie- und Investitionskosten	Hinweise: 1. L. Sauter, Vollwärmeschutz im Bochbau (Mitteilungen zur Isoliertechnik, Ludwigshafen) 2. Wärmeschutzverordnung Februar '82	 Berber, Bauphysik Verlag Handwerk und Technik, Hamburg Wiese, Wasserdampfdiffusion Teubner, Stuttgart
Lernziele	Eine Feuchtebilanz aufstellen und diese auswerten	7. Bauphysikalische Beurtellung von Konstruktionen Der Schüler soll Konstruktionen nach den behandelten bauphysikali- schen Gesichtspunkten umfassend beurteilen. Teillernziele	Wünde, Decken, Dachkonstruktionen unter Berücksichtigung des Wärme- schutzes, des Feuchteschutzes und des Wohnklimas beurteilen Wärmedehnung von Bauteilen berech-	narmedenning von bautellen berech- nen und beurteilen	Transmissionswärmeverluste von Wohngebäuden hinsichtlich eines wirtschaftlichen optimalen Wärme- schutzes beurteilen	,	

- 31

Bautechnik mit Laborübungen

Schulhalbjahr 13/II

"Industrialisiertes Baucn" (Halle aus Stahlbetonfertigteilen)

1. Fachziele

Stoffbezogene Fachziele

Der Schüler soll

- Methoden, Möglichkeiten und Grenzen des industrialisierten Bauens kennen sowie Fertigteilkonstruktionen beurteilen.

Verhaltensbezogene Fachziele

Der Schüler soll bereit sein, bei der konstruktiven Bearbeitung von Bauwerken funktionale, baustoffspezifische, statische, ästhetische und wirtschaftliche Gesichtspunkte zu berücksichtigen.

Lernabschnitte	Zeitricht- werte in Stunden	Seite
1. Tragsysteme	10	31
2. Fertigungs- und Montagetechnik	16	33
3. Dachhaut, Dachkonstruktion	24	32
4. Stützen- und Wandkonstruktion	26	34
5. Fundamentkonstruktionen	14	35
Zeitrichtwerte insgesamt	06	
Unterrichtszeit insgesamt	. 120	

	Lernziele	Lerninhalte
1. Trag	Tragsysteme und deren Stand- sicherheit	1. Tragsysteme und deren Stand- sicherheit (10)
Der Schüler Hallenbauten	Schüler soll Tragsysteme von enbauten beurteilen.	
Teillernziele	nziele	
Das his füge der ben	Das historisch entwickelte Bauge- füge der Hallen kennen und verste- ben	Massivbau: Außenwand als freistehende Mauer- scheibe, durch Pfeilervorlage aus- gesteifte Außenwand, freistehende Pfeiler
		Skelettbau: Hallen in Holz-, Stahl- und Stahl- betonbauweise
		Schalentragwerke Falttragwerke
Die Wir ausstei	Die Wirkungsweise von tragenden und aussteifenden Bauelementen erkennen	Wandscheibe, Dachscheibe, Deckenschale, Binderscheibe, Rahmen, Bogen, eingespannte Stütze, Pendelstütze
Die Verzusammen und beun	Die Verbindungsarten und -mittel zusammenwirkender Tragteile kennen und beurteilen	Arten der Lagerung; gelenkig, gleitend, eingespannt Einfluß des Baustoffes auf die Ver- bindungsart Baustoffspezifische Verbindungsmit- tel
Die Stan strukti	Die Standsicherheit von Hallenkon" struktionen begründen	Standsicherheit von Hallenkonstruk- tionen
2. Fert	Fertigungs- und Montagetechnik	2. Fertigungs- und Montagetechnik (16)
Der Schinisch be industrinen.	Der Schüler soll fertigungstech- nisch bedingte Arbeitsabläufe des industrialisierten Bauens verste- hen.	
Teillernziele	nziele	
Hohe Be und genn aussetzi fertigu	Nohe Betonqualität, Maßhaltigkeit und genaue Kennzeichnung als Vor- aussetzung für das Bauen mit vorge- fertigten Tellen erkennen	Konstantere Betonqualität von industriell hergestellten Elementen gcgenüber Ortbetonbauteilen Maßtoleranzen Kennzeichnungen

Lerninhalte	Aufgaben: - Schutz des Bauwerkes vor Klimaein Ilüssen - Abstützung von Schnec- und Windkräften Eigenlasten und Verkehrslasten in Abhängigkeit der baulichen Gegeben- heit und Nutzung Dächer als Gestaltungselement des einzelnen Baukörpers und der Unge- bung	Dichtigkeit in Abhängigkeit von Dachform und Dachneigung Kapillarität ind Diffusionswider- stand des Materials Einfluß von Frost	- Frost - Tauwechsel - Sonneneinstrahlung - Feuer Herstellung und Montage der Ein- deckung in Abhängigkeit zum Trag- system	Dacheindeckung aus: - Wellasbestzement, Wellkunstfaser- zement - Bitumenbahnen - Kunststoffe - Metall	Alkensysteme: $\frac{b}{l} = \frac{1}{2}$	- Trager + Platte [= 3] - Haupt- und Nebenträger, Platte Trager auf 2 Stiltzen gelenkie	oth thb	Bemessung und Konstruktion eines Parallelbinders mit Rechteckquer- schnitt, schlaff bewehrt	z.B. Kaltdach, Warmdach, Umkehrdach	
Lernziele	Die unterschiedlichen Aufgaben von Dächern erfassen und ihren Einfluß auf die Gesamterscheinung einer industriell gefertigten Halle kri- tisch betrachten	Kriterien für die Auswahl von Dacheindeckungen erarbeiten		Die wichtigsten Dacheindeckungen kennen und nach den Auswahlkriteri- en für eine industriell gefertigte Halle bewerten	Dachtragewerke aus Stahlbeton in Abhängigkeit zum Stützsystem und dessen Material finden	Formen and Onerschuttte von Stahl-	betonbindern verstehen	Einen Parallelbinder mit Rechteck- querschnitt aus Stahlbeton konstru- ieren und berechnen	Nach konstruktiven, bauphysikalischen schen und baustofftechnischen Gesichtspunkten Dachkonstruktionen für einen Hallenbau entwerfen	
Lerninhalte	Bedarf in großen Mengen (u.U. Serienfertigung) Eignung für die automatisierte Massenfertigung Einfügung in Rastersystem, Modul- ordnung Maßordnung im Hochbau Netz von Fertigteilwerken	Feldfabriken in Abhängigkeit der Transportwege	Max. Belastbarkeit der Straßen (38 t) Max. Ladehöhe = 4,20 m (für größere Ladehöhen Sondergenehmigung criorderlich)	Baustoffingerung Mischanlage Formenbau und Arbeitstische Aussparungen, Einbauteile, Beweh- rungen Rüttelgeräte Betonbeschickung	Dampferhärtung Ausschalen und Verladen (Betriebserkundung!)	Hebezeuge Fahrzeugplan Gerüste Sicherungsmethoden während der Montage	Richtgenauigkeit Unfallverhütungsvorschriften	3. Dachhaut, Dachkonstruktion (24)		
Lernziele	Bauliche Aniagen unter Berücksich- tigung konstruktiver und ökonomi- scher Gesichtspunkte auf ihre Eig- nung für eine industrialisierte Bauweise beurteilen	Die Transportkosten als einen bedeutenden Preisfaktor erkennen und verstehen, daß bei großen Bauvorhaben "Feldfabriken" rentabel werden	Bei Werksfertigung die Transport- möglichkeiten als Begrenzung von Gewicht und Größe der Einzeltelle crkennen	Die Arbeitsabläufe in einer Produktionshalle von Fertigteilen unter organisationstechnischen Gesichtspunkten beurteilen		Die Montage nach arbeitsorgnisa- torischen und technischen Gesichts- punkten beurteilen	Die Unfallverhiltungsvorschriften kennen und beim Baustellenbesuch beachten		von Hallen Kennen und Deutvelten.	

- 32

Lerninhalte	5. Fundamentkonstruktionen (14) Arten des Baugrundes nach DIN 1054 Zulässige Bodenpressungen Grundbruch Gefrorener Boden, Frostsicherheit	umente ndamente latten ingen messung shfundam thrägem, ng der k	Köcher- und Streifenfundamente Anschlüsse an: Stützen, Wände, Sohlen		
Lernziele	5. Fundamentkonstruktionen Der Schüler soll Fundamentkonstruk- tionen kennen und beurteilen. Teillernziele Arten und Verhalten des Baugrundes kennen und verstehen	Versteben, daß mit der Wahl der Gründung g l e i c h m ä ß i g e (zulässige) Setzungen des Bauwerkes angestrebt werden Fundamente in Abbängigkeit von Bauwerkslast und Baugrundbeschaffer- heit bestimmen können	Konstruktive Ausbildung von Hallen- fundamenten kennen und beurteilen		
Lerninhalte	4. Stützen- und Wandkonstruktion (26) Funktionen: - Tragen - Aussteifen	Dichten Gestalten Stützenarten für Balken auf. Stützen gelenkig gelagerte Stützen eingespannte Stützen NI 1045 - Querschnittsformen Vollquerschnitte: quadratisch, rechteckig, rund Aufgelöste Querschnitte: T, I, L Hohlquerschnitte	Stützen mit direkter Auflagerung Stützen mit Konsolauflagerung	Künstliche Mauersteine: - Ziegel - im gespannten Dampf erhärtete Steine - in freier Luft erhärtete Steine Wandbauplatten: ein- und mehrschichtig Formate und Abmessungen von Steinen und Platten Umfassungswände nach DIN 1053	Konstruktion von Umfassungswänden örtlich erstellt bzw. fabrikmäßig vorgefertigt aus: - Mauerwerk - Beton bzw. Stahlbeton - Leichtbeton - Kraftschlüssige Verbindungen - Umfassungsmauer / Stütze - vorgefertigter Wandelemente - untereinander - Nachweis: z. B. der Standsicherheit der Dampfdiffusion - der thermischen Dehnung Fugen
Lernziele	4. Stützen- und Wandkonstruktion Der Schüler soll Stützen und Wand- konstruktionen kennen und beurtei- len. Teillernziele Die Funktionen und das Zusammen- wirken von Stützen und Wänden ken- nen	Arten und Querschnittsformen von Stahlbetonstützen entwickeln	Stablbetonstützen für Tragwerks- systeme des Montagegerippebaus entwerfen	Wandbaustoffe kennen und über ibre Verwendungsmöglichkeiten entschei- den	Ein- und mehrschichtige Umfassungs- wände unter Berücksichtigung ihrer Aufgaben im Gefüge der Stahlbeton- halle konstruieren